Calibrated Forceps Model of Spinal Cord Compression Injury

نویسندگان

  • Ashley McDonough
  • Angela Monterrubio
  • Jeanelle Ariza
  • Verónica Martínez-Cerdeño
چکیده

Compression injuries of the murine spinal cord are valuable animal models for the study of spinal cord injury (SCI) and spinal regenerative therapy. The calibrated forceps model of compression injury is a convenient, low cost, and very reproducible animal model for SCI. We used a pair of modified forceps in accordance with the method published by Plemel et al. (2008) to laterally compress the spinal cord to a distance of 0.35 mm. In this video, we will demonstrate a dorsal laminectomy to expose the spinal cord, followed by compression of the spinal cord with the modified forceps. In the video, we will also address issues related to the care of paraplegic laboratory animals. This injury model produces mice that exhibit impairment in sensation, as well as impaired hindlimb locomotor function. Furthermore, this method of injury produces consistent aberrations in the pathology of the SCI, as determined by immunohistochemical methods. After watching this video, viewers should be able to determine the necessary supplies and methods for producing SCI of various severities in the mouse for studies on SCI and/or treatments designed to mitigate impairment after injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinematic analyses of air-stepping of neonatal rats after mid-thoracic spinal cord compression.

Although human infants suffer traumatic spinal cord injury, appropriate animal models have not been developed. The consequences of neonatal injury are not necessarily the same as in adults, so treatments designed for adults may not generalize to infants. Therefore, understanding the effects of traumatic injury to the developing cord is important. In this experiment, mid-thoracic spinal cords of...

متن کامل

Neuroprotective Effects of Aqueous Extract of Achillea Wilhelmsii on Motor Neuron Destruction of Spinal Cord Ventral Horn after Sciatic Nerve Compression in Male Adult Rats

Background & Aims: Peripheral nerve injuries affect both sensory and motor function, resulting in retrograde reaction to neuronal cell bodies in the ventral horn of spinal cord ventral and their destruction. Achillea wilhelmsii is one of the popular medicinal herbs which grow in dry and semitropical areas worldwide. There are several reports indicating the anti-inflammatory, antispasmodic, anti...

متن کامل

Systemic Effects of Experimental Spinal Cord Injury on Bone Healing in Rabbit

Bone loss after spinal cord injury leads to increased fragility of bone and subsequent risk for low-trauma fractures in the sublesional parts of the body. Although in such injuries upper limbs are normally innervated, bone loss may occur in the upper extremities. The present study was designed to determine the systemic effects of spinal cord injury on the fracture healing of upper limbs in rabb...

متن کامل

Mechanical and Thermal Sensory Testing in Normal Chondrodystrophoid Dogs and Dogs with Spinal Cord Injury caused by Thoracolumbar Intervertebral Disc Herniations

BACKGROUND Intervertebral disc herniation is a common cause of spinal cord injury (SCI) causing paralysis and sensory loss. Little quantitative information is available on the loss and recovery of sensation in dogs with SCI. OBJECTIVES To determine whether quantitative sensory testing (QST) can be used to establish thermal and mechanical sensory thresholds in chrondrodystrophoid dogs and comp...

متن کامل

Exogenous administration of glial cell line-derived neurotrophic factor improves recovery after spinal cord injury.

The aim of present study was to examine whether systemically delivered glial cell-derived neurotrophic factor (GDNF) was beneficial in reversing the spinal cord injury (SCI) in a spinal cord compression model. Rats were divided into three major groups: (1) sham operation (laminectomy only); (2) laminectomy+SCI+normal saline (1 ml/kg, i.v.); (3) laminectomy+SCI+GDNF (50 ng/kg, i.v.). Spinal cord...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2015